Chuyên ngành phân tích dữ liệu (Data Analysis) là lĩnh vực nghiên cứu và ứng dụng các phương pháp, công cụ và kỹ thuật để hiểu và rút ra thông tin từ dữ liệu. Người làm việc trong lĩnh vực này thường phải có kiến thức sâu về thống kê, toán học, khoa học máy tính và kỹ năng lập trình. Công việc của họ bao gồm thu thập dữ liệu, làm sạch dữ liệu, phân tích và trực quan hóa dữ liệu để tìm ra các mẫu, xu hướng, và thông tin quan trọng để hỗ trợ quyết định kinh doanh hoặc nghiên cứu.
100 từ vựng và cụm từ vựng
- Data Analysis – Phân tích dữ liệu
- Data Mining – Khai thác dữ liệu
- Data Visualization – Trực quan hóa dữ liệu
- Statistical Analysis – Phân tích thống kê
- Machine Learning – Học máy
- Predictive Modeling – Mô hình dự đoán
- Regression Analysis – Phân tích hồi quy
- Clustering – Gom cụm
- Classification – Phân loại
- Decision Trees – Cây quyết định
- Neural Networks – Mạng nơ-ron
- Big Data – Dữ liệu lớn
- Data Cleansing – Làm sạch dữ liệu
- Data Warehouse – Kho dữ liệu
- Data Integration – Tích hợp dữ liệu
- Exploratory Data Analysis – Phân tích dữ liệu khám phá
- Time Series Analysis – Phân tích chuỗi thời gian
- Correlation Analysis – Phân tích tương quan
- Anomaly Detection – Phát hiện bất thường
- Feature Engineering – Kỹ thuật tạo đặc trưng
- Ensemble Learning – Học kết hợp
- Dimensionality Reduction – Giảm chiều dữ liệu
- Data Preprocessing – Tiền xử lý dữ liệu
- Data Normalization – Chuẩn hóa dữ liệu
- Data Sampling – Lấy mẫu dữ liệu
- Data Imputation – Điền dữ liệu thiếu
- Overfitting – Quá mức đồng bộ
- Underfitting – Thiếu đồng bộ
- Cross-validation – Xác thực chéo
- Feature Selection – Lựa chọn đặc trưng
- Support Vector Machines – Máy vector hỗ trợ
- Natural Language Processing – Xử lý ngôn ngữ tự nhiên
- Sentiment Analysis – Phân tích cảm xúc
- Text Mining – Khai thác văn bản
- Topic Modeling – Mô hình chủ đề
- Latent Dirichlet Allocation (LDA) – Phân bố ẩn Dirichlet (LDA)
- Word Embedding – Nhúng từ
- Bag of Words – Túi từ
- Term Frequency-Inverse Document Frequency (TF-IDF) – Tần suất từ – Tần suất tài liệu nghịch đảo (TF-IDF)
- Collaborative Filtering – Lọc cộng tác.
- K-means Clustering – Phân cụm K-means
- Hierarchical Clustering – Gom cụm phân cấp
- Random Forest – Rừng ngẫu nhiên
- Gradient Boosting – Tăng cường độ dốc
- Principal Component Analysis (PCA) – Phân tích thành phần chính (PCA)
- Singular Value Decomposition (SVD) – Phân rã giá trị đơn
- Association Rule Learning – Học luật kết hợp
- Market Basket Analysis – Phân tích giỏ hàng
- Apriori Algorithm – Thuật toán Apriori
- Recommender Systems – Hệ thống gợi ý
- Collaborative Filtering – Lọc cộng tác
- Content-based Filtering – Lọc dựa trên nội dung
- Hybrid Recommender Systems – Hệ thống gợi ý kết hợp
- Cosine Similarity – Độ tương tự Cosine
- Euclidean Distance – Khoảng cách Euclid
- Manhattan Distance – Khoảng cách Manhattan
- Pearson Correlation Coefficient – Hệ số tương quan Pearson
- Spearman’s Rank Correlation – Tương quan hạng Spearman
- Mean Absolute Error (MAE) – Sai số trung bình tuyệt đối
- Root Mean Squared Error (RMSE) – Sai số trung bình bình phương căn
- R-squared (R²) – Hệ số xác định R-bình phương
- Confusion Matrix – Ma trận nhầm lẫn
- Precision – Độ chính xác
- Recall – Tỉ lệ nhớ lại
- F1 Score – Điểm F1
- Receiver Operating Characteristic (ROC) Curve – Đường cong ROC
- Area Under the Curve (AUC) – Diện tích dưới đường cong
- Mean Squared Error (MSE) – Sai số trung bình bình phương
- Hyperparameter Tuning – Điều chỉnh siêu tham số
- Grid Search – Tìm kiếm trên lưới
- Random Search – Tìm kiếm ngẫu nhiên
- Cross-entropy Loss – Hàm mất mát entropy chéo
- Gradient Descent – Suy giảm độ dốc
- Stochastic Gradient Descent (SGD) – Suy giảm độ dốc ngẫu nhiên (SGD)
- Learning Rate – Tốc độ học
- Batch Size – Kích thước lô
- Epoch – Thời đại
- Backpropagation – Lan truyền ngược
- Dropout – Loại bỏ
- Regularization – Chính quy hóa
- L1 Regularization – Chính quy hóa L1
- L2 Regularization – Chính quy hóa L2
- Cross-entropy Loss – Hàm mất mát entropy chéo
- Mean Absolute Percentage Error (MAPE) – Sai số phần trăm tuyệt đối trung bình
- Precision-Recall Curve – Đường cong Precision-Recall
- Bias-Variance Tradeoff – Sự đánh đổi giữa sai số cố định và phương sai
- Overfitting – Quá mức đồng bộ
- Underfitting – Thiếu đồng bộ
- Regularization – Chính quy hóa
- Cross-validation – Xác thực chéo
- Batch Normalization – Chuẩn hóa lô
- Transfer Learning – Học chuyển giao
- Data Augmentation – Tăng cường dữ liệu
- Dropout – Loại bỏ
- Optimizer – Bộ tối ưu hóa
- Gradient Descent – Suy giảm độ dốc
- Momentum – Động lượng
- Learning Rate Scheduling – Lập lịch tốc độ học
- Early Stopping – Dừng sớm
- Ensemble Learning – Học kết hợp.
Bài tập
- Perform _____ on a dataset containing sales data to identify trends over time.
- Use _____ to group customers based on their purchasing behavior.
- Apply _____ to classify email messages as spam or non-spam.
- Create a _____ model to predict stock prices.
- Implement _____ to analyze the correlation between weather patterns and crop yields.
- Use _____ to visualize the distribution of income levels in different regions.
- Apply _____ to detect fraudulent transactions in a banking dataset.
- Use _____ to preprocess text data before conducting sentiment analysis.
- Implement _____ to reduce the dimensionality of a dataset with high feature counts.
- Use _____ to integrate data from various sources into a single database.
- Perform _____ to identify outliers in a dataset.
- Apply _____ to identify patterns in customer shopping habits.
- Use _____ to estimate the probability of customer churn.
- Create a _____ model to recommend movies based on user preferences.
- Implement _____ to analyze the sentiment of product reviews.
- Use _____ to extract topics from a collection of news articles.
- Apply _____ to preprocess text data before training a language model.
- Perform _____ to analyze the seasonal variations in electricity consumption.
- Use _____ to preprocess image data before training a convolutional neural network.
- Apply _____ to cluster similar documents together.
- Create a _____ model to predict the outcome of sports matches.
- Implement _____ to identify association rules in market basket data.
- Use _____ to preprocess audio data before training a speech recognition model.
- Apply _____ to classify medical images for disease diagnosis.
- Use _____ to preprocess sensor data before anomaly detection.
- Perform _____ to analyze the relationship between advertising expenditure and sales revenue.
- Apply _____ to preprocess time-series data before forecasting.
- Use _____ to visualize the geographic distribution of customer locations.
- Create a _____ model to predict the risk of loan default.
- Implement _____ to analyze the effectiveness of marketing campaigns.
- Use _____ to preprocess textual data before training a named entity recognition model.
- Apply _____ to cluster genes based on their expression patterns.
- Perform _____ to analyze the performance of different machine learning algorithms.
- Use _____ to preprocess numerical data before training a regression model.
- Apply _____ to preprocess text data before training a text classification model.
- Use _____ to visualize the relationships between variables in a dataset.
- Create a _____ model to recommend products to online shoppers.
- Implement _____ to preprocess text data before training a language translation model.
- Apply _____ to classify images for content moderation.
- Use _____ to preprocess sensor data before predictive maintenance analysis.
- Perform _____ to analyze the impact of weather conditions on transportation systems.
- Apply _____ to preprocess financial data before training a fraud detection model.
- Use _____ to preprocess text data before training a summarization model.
- Create a _____ model to predict housing prices based on location and features.
- Implement _____ to preprocess text data before training a text generation model.
- Apply _____ to classify sentiment in social media posts.
- Use _____ to preprocess image data before training an object detection model.
- Perform _____ to analyze customer satisfaction based on survey responses.
- Apply _____ to preprocess text data before training a named entity recognition model.
- Use _____ to visualize the distribution of customer demographics.
- Create a _____ model to predict user preferences for online advertisements.
- Implement _____ to preprocess text data before training a document clustering model.
- Apply _____ to preprocess text data before training a sentiment analysis model.
- Use _____ to visualize the flow of website traffic.
- Perform _____ to analyze the impact of marketing strategies on brand awareness.
- Apply _____ to preprocess text data before training a text summarization model.
- Use _____ to visualize changes in stock prices over time.
- Create a _____ model to predict customer churn based on historical data.
- Implement _____ to preprocess text data before training a named entity recognition model.
- Apply _____ to preprocess text data before training a sentiment analysis model.
- Use _____ to visualize the distribution of customer purchase frequencies.
- Perform _____ to analyze the effectiveness of different pricing strategies.
- Apply _____ to preprocess text data before training a document classification model.
- Use _____ to visualize the distribution of user ratings for a product.
- Create a _____ model to predict the outcome of a medical diagnosis.
- Implement _____ to preprocess text data before training a machine translation model.
- Apply _____ to preprocess text data before training a text generation model.
- Use _____ to visualize changes in air quality over time.
- Perform _____ to analyze customer preferences based on product reviews.
- Apply _____ to preprocess text data before training a sentiment analysis model.
- Use _____ to visualize the spread of a contagious disease.
- Create a _____ model to predict customer lifetime value.
- Implement _____ to preprocess text data before training a topic modeling model.
- Apply _____ to preprocess text data before training a sentiment analysis model.
- Use _____ to visualize the distribution of customer purchase amounts.
- Perform _____ to analyze the impact of advertising on website traffic.
- Apply _____ to preprocess text data before training a text summarization model.
- Use _____ to visualize the distribution of housing prices in different neighborhoods.
- Create a _____ model to predict the likelihood of an insurance claim.
- Implement _____ to preprocess text data before training a named entity recognition model.
- Apply _____ to preprocess text data before training a sentiment analysis model.
- Use _____ to visualize changes in temperature over time.
- Perform _____ to analyze the performance of different product variants.
- Apply _____ to preprocess text data before training a document clustering model.
- Use _____ to visualize the distribution of customer purchase locations.
- Create a _____ model to predict the outcome of a legal case.
- Implement _____ to preprocess text data before training a machine translation model.
- Apply _____ to preprocess text data before training a text generation model.
- Use _____ to visualize changes in sea levels over time.
- Perform _____ to analyze customer preferences based on product ratings.
- Apply _____ to preprocess text data before training a sentiment analysis model.
- Use _____ to visualize the distribution of customer age groups.
- Create a _____ model to predict the likelihood of a customer returning a product.
- Implement _____ to preprocess text data before training a topic modeling model.
- Apply _____ to preprocess text data before training a sentiment analysis model.
- Use _____ to visualize changes in traffic congestion over time.
- Perform _____ to analyze the impact of product packaging on sales.
- Apply _____ to preprocess text data before training a document classification model.
- Use _____ to visualize the distribution of customer satisfaction scores.
- Create a _____ model to predict the outcome of a political election.
Đáp án
- Data Analysis
- Clustering
- Classification
- Predictive Modeling
- Statistical Analysis
- Data Visualization
- Anomaly Detection
- Data Mining
- Dimensionality Reduction
- Data Integration
- Outlier Detection
- Market Basket Analysis
- Predictive Modeling
- Recommender Systems
- Sentiment Analysis
- Topic Modeling
- Data Preprocessing
- Time Series Analysis
- Data Preprocessing
- Clustering
- Predictive Modeling
- Association Rule Learning
- Data Preprocessing
- Classification
- Data Preprocessing
- Statistical Analysis
- Time Series Analysis
- Data Visualization
- Predictive Modeling
- Statistical Analysis
- Data Preprocessing
- Clustering
- Statistical Analysis
- Data Preprocessing
- Data Preprocessing
- Data Visualization
- Recommender Systems
- Data Preprocessing
- Classification
- Data Preprocessing
- Statistical Analysis
- Data Preprocessing
- Data Preprocessing
- Predictive Modeling
- Data Preprocessing
- Classification
- Data Preprocessing
- Sentiment Analysis
- Data Preprocessing
- Data Visualization
- Predictive Modeling
- Data Preprocessing
- Data Preprocessing
- Data Visualization
- Statistical Analysis
- Data Preprocessing
- Data Visualization
- Predictive Modeling
- Data Preprocessing
- Data Preprocessing
- Data Visualization
- Statistical Analysis
- Data Preprocessing
- Data Visualization
- Predictive Modeling
- Data Preprocessing
- Data Preprocessing
- Data Visualization
- Statistical Analysis
- Data Preprocessing
- Data Visualization
- Predictive Modeling
- Data Preprocessing
- Data Preprocessing
- Data Visualization
- Statistical Analysis
- Data Preprocessing
- Data Visualization
- Predictive Modeling
- Data Preprocessing
- Data Preprocessing
- Data Visualization
- Statistical Analysis
- Data Preprocessing
- Data Visualization
- Predictive Modeling
- Data Preprocessing
- Data Preprocessing
- Data Visualization
- Statistical Analysis
- Data Preprocessing
- Data Visualization
- Predictive Modeling
- Data Preprocessing
- Data Preprocessing
- Data Visualization
- Statistical Analysis
- Data Preprocessing
- Data Visualization
- Predictive Modeling
Đọc lại bài trước: 100 từ vựng và cụm từ tiếng Anh chuyên ngành về nghề Quản lý nhà cung cấp.